Macroscopic Editor, Progression, and Principles

With the plans for the overall body customization planned out, I have decided to approach customization of the dermal covering of the organism. The dermis plays an analogous role to the membrane of a cell, separating the organism’s internal environment from the external environment it inhabits, so it’s a pretty important aspect of evolution.
Keep in mind that this is a this is a rough draft, as there’s much to consider and discuss before we nail down the exact designs and forms of customization.


Integuments Tab

In Thrive, the dermis is not tied to a specific metaball within the creature unlike other organs, and instead is edited through the integuments tab.

The integuments tab presents players with a variety of customization options that can have a big effect on their organism such as dermal thickness, dermal coverings, and the nature of the dermal cells that compose the skin.

The nature of a player’s integumentary system can have a large effect on their osmoregulation, ability to passively absorb nutrients from their environment, ability to respirate through their skin, defensive capabilities, and more.

The integumentary system will play the largest role in a species’ tolerance to new environments, and will likely be the first recipient of adaptation before further specialization due to relatively lower cost and larger impact. It is easier to develop a thicker coat than to generate more body heat after all.

Dermal Cells:

When the player enters the macroscopic stage, the first cell the organism starts with, the stem cell, will become the dermal cell while all other specialized cells become the first organs. Alternatively, the most numerous cell could be chosen to become the dermal cell. Which ever proves to be most effective and possible to implement. The customization of dermal cells could also potentially be entirely avoided for ease of understanding and simplicity.

The dermal cell is what composes the organism’s skin, and benefits from being exposed to the outside environment, while protecting the organism’s more sensitive innards. It’s characteristics can decide what color flesh the organism has, if an organism is toxic on contact, if it’s skin is coated in mucus, or even if it can photosynthesize.

Due to the nature of dermal cells, some of their organelles will have new purpose compared to internal organ cells. The specifics of which are described below;

  • Slime jets; Create a continuous mucus coating like sebum or slime on the organism that can protect from various threats.
  • toxic parts; Depending on upgrades, makes skin poisonous to eat or toxic to touch. cnidocytes create a stinging touch.

Dermal Thickness:

Dermal thickness is simply a measure of how thick the organism’s skin is, and can be edited by a basic slider much like fluidity/rigidity in the microbe stages. Thicker skinned creatures will have more health, resistance to environmental conditions, and lower osmoregulation costs.
Thinner skinned creatures will be able to passively absorb compounds from their surroundings through their skin, respirate through their skin, and regenerate health more quickly.

Increasing thickness effects the following stats;

  • Total health +
  • environmental tolerance range +
  • osmoregulation cost -
  • Regeneration rate -
  • Passive compound absorption -
  • Respiration rate -

Smaller, simpler creatures can easily benefit from thinner skin as they will have little to no need for an advanced respiratory system. Larger creatures will likely need to develop thicker skin as the benefits of thin skin are diminished by increasing respiratory needs and osmoregulation.

Dermal Covering:

Coverings are features that provide an extra layer of defense to an organism, such as fur, scales, osteoderms, feathers, scutes, and bare skin. Their implementation and function is mechanically synonymous with membrane selection on the cellular level, with the player selecting a covering of their choice to be applied over the organism.

Coverings have a significant effect on the environmental tolerance range of an organism, but can also provide additional effects to damage resistance, speed, or even possibly effective mass.
Loose concepts for various coverings and their potential effects are listed below (Note that these ideas may be totally irrelevant until we have a firm understanding of the range of statistics organisms will be subject to);

Bare skin: No special benefits or malises.
Scales: Provide a small layer of physical protection and help dissipate heat, increasing max temperature range at the cost of cold vulnerability. reduce drag.
Scutes: Grants good physical protection, reduces speed due to decreased range of mobility.
Feathers: Help retain heat, reduce drag with little to no malaise.
Osteoderms: Functionally similar to scute stats wise.
Fur: Provides great environmental tolerance against both heat and cold. Increases drag.

In the event that dermal cell customization is present, the types of covering a creature can use may potentially be limited by the membrane type of their dermal cells. Such as chitin organisms using cetae and chitin plating, or cellulose organisms using bark and suberin.

Dermal Features:

Features are an additional and mostly cosmetic layer to covering customization. Features include localized tufts of fur, bundles of scales, etc. Players are able to place these down to create features such as manes, crests, flashy plummage, and more to customize their organism. These features could play a large role in differentiating sex or other alternate forms of a species without drastic changes to morphology.


Final Thoughts

Customization of the outer skin of an organism is an important avenue of differentiation and adaptation for species and player alike, and has a large bearing on environmental adaptation. Therefore it is important to provide such options.

I personally feel that we should forgo specifying a specific cell type for an organism’s dermis as it creates an intensive amount of complexity that we honestly should avoid for what is otherwise an accessory addition to the editor. On Earth, most species feature a complex array of specialized cells and tissues that would lead to a depth of customization equal to the organs, thus effectively doubling editor complexity. It’s also worth mentioning that many dermal features are extracellular, or tied to cell parts like the golgi apparatus which makes design and mechanical differentiation pretty complicated.

Adjusting the dermal thickness is another aspect I have seriously considered, but ultimately feel would be nothing more than a feature that would punish players for not understanding it’s importance more than anything else. Instead, it may be better to include it’s stats as a natural consequence to increased size, rather than a soft requirement.

I personally feel that the best way to handle this customization is to simply present players with a list of unique coverings to throw on their organism, a way to adjust coloration and patterns, and be done so as not to distract from the rest of the editor.

Things to consider:

  • There are many ways to go about dermal customization, creating substantial risk of unneeded depth and complexity that serves more to disorient players, so care needs to be taken to ensure that dermal customization is quick and easy to utilize so as not to distract from other areas of customization.
  • Features such as shells, horns, or spines may need additional thought and consideration.
  • Various covering types are unique to different cell types in reality, thus there may be a need for deciding what type of cell membrane comprises the dermis regardless of whether the microbe editor is used.
  • Incorporating the microbe editor for dermal customization is potentially more complex than necessary
  • Customization of dermal thickness is potentially unnecessary, forcing players to utilize a slider as their species grows in size, and thus creating an extra step to an already complicated process.
  • Placing features may possibly require special handling compared to the placement of body-parts.
1 Like