Nick's Auto-Evo Algorithm (Episode 1)

Ah thanks I fixed the post.

Also very interesting, what are you planning to include in the fitness calculations? Let me know if I can offer any of the equations or functions I’ve created so far.

Yeah that’s a good question. At the moment, since the model is so simple the Competitive Exclusion Principle has a very exaggerated effect. However, there are several reasons that I can think of that ideally should limit the Competitive Exclusion Principle acting strongly and quickly to wipe out competing species. As we build the algorithm these should start to be introduced. Technically, if there was a species predating on Modelus or Propagatus, that would be a additional factor that would limit the Competitive Exclusion, but we’ll assume that does not apply:

  • The model currently lacks intraspecific competition, which means that an increasing number of Modelus Specius will always perfectly cooperate with each other and each will decide to target separate foods from the other members of Modelus Specius. Even in times of shortage members of Modelus willingly choose to take, for example, 75% of the energy they need so that all other members also can get 75% of the energy they need. We know that realistically this doesn’t happen, so I’ve been thinking about how to model intraspecific competition and I might have a solution for the upcoming sub-part.
  • The model only has one niche which both species are trying to fill. In more complex ecosystems, Predator 1 might hunt Prey A and Prey B, and Predator 2 might hunt Prey B and Prey C, and Predator 3 might hunt Prey C and Prey A. Predator 1 is the dominant competitor for hunting Prey A, as is 2 with B, and 3 with C. However, since they all have different overlaps for their niches and the prey they are most successful at hunting, competitive exclusion will have less of an effect to reduce their numbers.
  • The predators are highly efficient. At the moment there are very few things obstructing the predators from catching their prey. For example the predators do not have to deal with the constraints of perception and simply always know where the prey are. They also always catch the prey and do not have to fight in combat with the prey. I’m predicting that once we add in new features like perception and prey that run or fight back, predators will become much less efficient and Competitive Exclusion will develop a weaker effect. I might be wrong on this one though.
  • The exclusion of weaker species only actually kicks in in times of shortage. Notice how before the food shortage both populations were growing, even the weaker predator. The shortage is also pretty unrealistic, since during the shortage months all the food is being eaten, and then 2,000,000 units of food are appearing out of thin air to replenish the food stocks in the next month. Once we implement predation on proper species that have realistic population growth, I’m predicting it will change the amount of Competitive Exclusion we see.
  • The Competitive Exclusion Principle as it’s currently implemented only applies to consumers (aka heterotrophs). The equation so far is specifically for chases when one predator catches the prey before you do, and there’s only a limited number to catch. For something like plankton, if one plankton consumes solar energy it doesn’t take any solar energy away from another plankton. Instead here the competition becomes more about location, and being the plankton that is at the top of the ocean to receive the sunlight and physically block plankton below you who will receive less of the light. Also, I’m not sure if the plankton all feed on the same minerals or on different minerals, because if it’s the latter there might also be some differences in the niches they are trying to occupy, again leading to less Competitive Exclusion.