As of now, toxins in Thrive merely act as a ranged weapon for the celluar stage. The various ideas I have aggregated here are intended to address the various complaints from players and the simplicity of the toxins. I have presented this to provide materials for discussion on the subject, and would like to hear what anyone would like to share or criticize.
Toxins and Customization
To begin, we all know that in reality there are hundreds of various unique toxins and compositions with different targets and effects. However, in Thrive we will either have to collapse these endless varieties into a select few representative toxins, or lend the player the creative freedom of designing a toxin with unique traits. I have elaborated on the two proposed methods below. Keep in mind that toxin customization would likely need a new UI element, perhaps attached to the oxytoxisome.
-
Basic premade toxins categorized into types like A, B, and C (letters replaced with names once included). alongside basic protein complexes or metabolosomes to combat them.
Having atleast 3 varieties of premade toxins that behave differently would grant cells diverse methods of hunting and defense. For example A could act as the current toxin and simply deal damage, while B could act as a motile inhibitor, slowing afflicted cells enough to be caught. -
Customizable toxins. (Could still be categorized based on effect.)
Toxins would be customizable in how deadly, persistent, or iresistable they are, as well as what functions they target in the afflicted cell. With the sheer amount of potential toxin types that could arise from this, the toxins would likely still need to be categorized based on how they effect the cells for the sake of resistance and simplicity (EX: all toxins that deal flat damage are considered A type).
Now I’m sure everyone will immediately favor option 2 as more customization is always favorable. However, the most immediate problem with such vast customization is going to be the amount of unique editors and menus required for being able to customize anything. Having too many menus and editors could force the game to develop a steep learning curve and a generally overwelming depth that could confuse many players. That doesnt mean we can’t have it however, as we could have both versions of this idea, basic and advanced for the player to choose. But that is a discussion for another time.
Toxin Behavior
As of now, toxins in thrive simply inflict damage on cells when they collide. The idea I proposed below is intended to turn toxins into a more dynamic and unique threat from basic physical damage.
Instead of an immediate effect on the cell, toxins could instead collect inside the target, remaining harmless until the critical limit is reached. Once this limit is surpassed, the cell will be afflicted with the detremental effects of the toxin until the build-up is reduced back to safe levels. Toxic buildup will gradually decrease over time, and could potentially be hastened by specialized metabolic processes. Additionally, certain cell walls and membranes could increase the build-up limit, allowing the cell to contain more toxins without harm.
This method greatly appeals to me, but it could potentially be difficult to code, along with potential complications in how the build-up could be effectively represented to the player.
Toxin Delivery
Alongside how toxins effect cells, introducing new and alternative ways to deliver them is just as important to making toxins a diverse threat. Below are methods I have proposed on how to implement such features.
-
Organelle upgrades:
The oxytoxisome could be upgraded into different forms that will deliver toxins in new ways. This would be a simpler method once organelle upgrades are implemented. -
Toxin delivery tied into behavior:
The method that cells deliver their toxins could be included in the behavior editor. This could make it easier to switch between delivery methods as you wouldn’t need to mess with upgrading or downgrading specific parts. However, we would need to see about how to handle choosing multiple delivery methods in the options. -
Toxins tied to parts:
Similar to concept 1, toxin delivery could be tied to specialized or altered parts rather than the oxytoxisome. An example would be a pilus being upgraded to deliver toxins.
Toxin Resistance
With toxins already being a considerable threat to cells, it makes sense that defending yourself from them must be reworked alongside the new features to keep the game balanced and fun. Just like how it works in the game now, toxin resistance could be a percent decrease to the effectiveness of the toxins, whether it be decreasing amount of build-up or amount of damage. However with there being three or more types of toxins, toxic resistance may need to be split into several individual values relating to each type. Doing this will ensure that it will be very expensive, if not nearly impossible to build complete immunity to all toxins.
If we choose to use the build-up system for toxins, it may be suitable to allow the cell’s own toxins to harm them should they not be immune, or otherwise unable to dispose of it quickly enough. This could be problematic with AI toxic cells however, so keep that in mind. Otherwise with the immediate effect system it might be best to leave cells invulnerable to their own toxins.
-
Specialized Organelles:
Toxic resistance could be increased by the use of specialized metabolosomes that break down the toxins faster, or membranes that provide a net resistance to all toxic intake. Oxytoxisomes could also provide an amount of resistance to the cell’s own toxin, but not as much as specialized organelles. -
Enzyme/Protein slots:
This idea has been discussed before, and still remains as a potential option for toxic protection. The proteins and enzymes utilized for this feature are free-floating in the cytoplasm rather than being centered in an organelle complex. So they do not take up space in the cell, or are tied to a placed part by traditional means. My take on this idea would be that all cells have atleast 2 slots that they can place any component from a list into these slots. Placing the same compound into multiple slots would increase the effectiveness of said compound. The size of your cell could potentially provide more slots for this, as well as the presence of a nucleus.
Toxic resistance could be tied into this mechanic by allowing cells to have free-floating enzymes that neutralize a specific toxin when encountered. The problem with this method is that the location of the slots is still a subject of discussion, along with complaints that this feature is “too gamey”.
I hope that what I have posted here sparks constructive discussion on the matter of toxins and how they could work. My own preferences are point 2 for customization, Point 2 for toxic delivery, and both 1 and 2 for toxic resistance. I look forward to what others think about what I have brought to the table, as well as any provided ideas of their own.